
SQL Language Cheat Sheet BEEKEEPER STUDIO

SELECT Basics

Retrieve data from tables by specifying which columns to return. Use
DISTINCT to remove duplicates and AS for aliases.

SELECT customer_id, name, email
FROM customers;

-- With alias and DISTINCT
SELECT DISTINCT country AS customer_country
FROM customers;

Key Points:

• Use specific columns instead of * for better performance

• DISTINCT removes duplicate rows

• AS keyword creates column aliases

• Column order in SELECT determines result order

WHERE Clause

Filter rows based on conditions using comparison operators.
Combine multiple conditions with AND/OR.

SELECT name, price
FROM products
WHERE price > 100;

-- Multiple conditions
SELECT name, category
FROM products
WHERE category = 'Electronics'
AND price <= 500;

Key Points:

• Filters rows before returning results

• Can combine multiple conditions with AND/OR

• String values require single quotes

• Operators: =, !=, <>, <, >, <=, >=

Logical Operators

Combine multiple conditions using AND (all must be true), OR (at
least one true), and NOT (negates condition).

-- AND operator
SELECT * FROM orders
WHERE status = 'shipped' AND total > 100;

-- OR operator
SELECT * FROM customers
WHERE country = 'USA' OR country = 'Canada';

Key Points:

• AND has higher precedence than OR

• Use parentheses to control evaluation order

• NOT is equivalent to != or <>

• Combine operators for complex logic

ORDER BY

Sort query results in ascending (ASC) or descending (DESC) order.
Sort by multiple columns for complex ordering.

-- Single column sort
SELECT name, price
FROM products
ORDER BY price DESC;

-- Multiple columns
SELECT name, category, price
FROM products
ORDER BY category ASC, price DESC;

Key Points:

• ASC is default if not specified

• Sort by multiple columns (left to right priority)

• Can sort by column not in SELECT list

• NULL values sorted first or last (DB-dependent)

beekeeperstudio.io/sql-cheat-sheet Page 1 of 4



SQL Language Cheat Sheet BEEKEEPER STUDIO

LIMIT / OFFSET

Limit the number of rows returned and skip rows using OFFSET.
Essential for pagination and working with large result sets.

-- First 10 rows
SELECT name, price
FROM products
ORDER BY price DESC
LIMIT 10;

-- Pagination (skip 20, get next 10)
SELECT name, price
FROM products
ORDER BY price DESC
LIMIT 10 OFFSET 20;

Key Points:

• Essential for pagination

• Combine with ORDER BY for consistent results

• OFFSET starts at 0 (first row)

• Note: SQL Server uses TOP instead of LIMIT

Pattern Matching (LIKE)

Match text patterns using wildcards: % matches any sequence of
characters, _ matches a single character.

-- Starts with 'John'
SELECT name, email
FROM customers
WHERE name LIKE 'John%';

-- Contains 'smith'
SELECT name FROM customers
WHERE name LIKE '%smith%';

-- Exact pattern (5 chars, starts with 'A')
SELECT code FROM products
WHERE code LIKE 'A____';

Key Points:

• % matches zero or more characters

• _ matches exactly one character

• Case sensitivity depends on database collation

• Can use NOT LIKE for exclusion

Range & Set (BETWEEN, IN)

Filter by ranges using BETWEEN (inclusive) or match values in a list
using IN. More efficient than multiple OR conditions.

-- BETWEEN (inclusive)
SELECT name, price
FROM products
WHERE price BETWEEN 50 AND 100;

-- IN operator
SELECT name, country
FROM customers
WHERE country IN ('USA', 'Canada', 'Mexico');

Key Points:

• BETWEEN includes both boundary values

• IN is cleaner than multiple OR conditions

• Can use IN with subqueries

• BETWEEN works with dates and strings

NULL Handling

Work with NULL values using IS NULL and IS NOT NULL. Use
COALESCE to provide default values for NULL columns.

-- Find NULL values
SELECT name, phone
FROM customers
WHERE phone IS NULL;

-- Exclude NULL values
SELECT name, email
FROM customers
WHERE email IS NOT NULL;

-- Provide default value
SELECT name, COALESCE(phone, 'No phone') AS contact
FROM customers;

Key Points:

• Cannot use = or != with NULL

• Must use IS NULL or IS NOT NULL

• COALESCE returns first non-NULL argument

• NULL in math operations results in NULL

beekeeperstudio.io/sql-cheat-sheet Page 2 of 4



SQL Language Cheat Sheet BEEKEEPER STUDIO

Aggregate Functions

Perform calculations on sets of rows: COUNT, SUM, AVG, MIN,
MAX. Aggregates ignore NULL values (except COUNT(*)).

-- Basic aggregates
SELECT
COUNT(*) AS total_orders,
SUM(amount) AS total_revenue,
AVG(amount) AS avg_order,
MIN(amount) AS smallest,
MAX(amount) AS largest

FROM orders;

-- COUNT variations
SELECT COUNT(*), COUNT(email),

COUNT(DISTINCT country)
FROM customers;

Key Points:

• COUNT(*) includes all rows (even with NULL)

• COUNT(column) excludes NULL values

• COUNT(DISTINCT column) counts unique values

• SUM/AVG only work with numeric types

GROUP BY / HAVING

Group rows by column values and apply aggregate functions. Use
HAVING to filter groups (like WHERE for groups).

-- Group by single column
SELECT country, COUNT(*) AS customer_count
FROM customers
GROUP BY country
ORDER BY customer_count DESC;

-- Multiple columns with HAVING
SELECT category, status, AVG(price) AS avg_price
FROM products
GROUP BY category, status
HAVING AVG(price) > 50;

Key Points:

• All non-aggregate SELECT columns must be in GROUP BY

• WHERE filters rows before grouping

• HAVING filters groups after aggregation

• Can use aggregate functions in HAVING clause

Joins (Quick Reference) SEE DETAILED GUIDE

Combine data from multiple tables based on related columns. INNER
JOIN returns matches only, LEFT/RIGHT preserve one side.

-- INNER JOIN (most common)
SELECT orders.id, customers.name, orders.amount
FROM orders
INNER JOIN customers
ON orders.customer_id = customers.id;

-- LEFT JOIN (all orders + matching customers)
SELECT orders.id, customers.name
FROM orders
LEFT JOIN customers
ON orders.customer_id = customers.id;

Key Points:

• INNER JOIN is most common (can write as just JOIN)

• LEFT/RIGHT JOINs preserve all rows from one table

• Use ON clause to specify join condition

• See beekeeperstudio.io/sql-join-cheat-sheet for more

Subqueries

Queries within queries for complex filtering and calculations. Use with
IN, EXISTS, or as scalar values.

-- Subquery with IN
SELECT name, price
FROM products
WHERE category_id IN (
SELECT id FROM categories
WHERE name = 'Electronics'

);

-- Subquery with EXISTS
SELECT name FROM customers c
WHERE EXISTS (
SELECT 1 FROM orders o
WHERE o.customer_id = c.id

);

Key Points:

• IN subquery returns multiple values

• EXISTS checks for existence (efficient)

• Scalar subquery returns single value

• Correlated subquery references outer query

beekeeperstudio.io/sql-cheat-sheet Page 3 of 4



SQL Language Cheat Sheet BEEKEEPER STUDIO

Useful Resources

SQL Reference Guides

• SQL JOIN Cheat Sheet

beekeeperstudio.io/sql-join-cheat-sheet

Visual guide to all JOIN types with diagrams

• SQL Tutorials & Guides

beekeeperstudio.io/blog

In-depth tutorials on SQL fundamentals

Free Developer Tools

• SQL Formatter

beekeeperstudio.io/formatter

Format and beautify your SQL queries

• SQL Data Generator

beekeeperstudio.io/tools/sql-data-generator

Generate realistic test data for tables

• More Free Tools

beekeeperstudio.io/tools

JSON to SQL, syntax checker, and more

Database-Specific Guides

• PostgreSQL Documentation

beekeeperstudio.io/db/postgres

• MySQL Documentation

beekeeperstudio.io/db/mysql

• 15+ Databases Supported

beekeeperstudio.io/databases

About Beekeeper Studio

Beekeeper Studio Query Editor

Beekeeper Studio is a modern, open-source SQL editor and

database manager designed to make working with databases

easier and more enjoyable.

 Open Source & Free Community Edition

Available on GitHub with a GPL license. Free for personal and

commercial use.

Key Features:

• Autocomplete for tables, columns, and keywords

• Visual table editor with data editing

• Query history and saved queries

• Support for 15+ databases (PostgreSQL, MySQL, SQLite, SQL Server,

Oracle, and more)

• Cross-platform: Linux, macOS, and Windows

• Import/export data in multiple formats

Download & Learn More:

beekeeperstudio.io

GitHub: github.com/beekeeper-studio/beekeeper-studio

beekeeperstudio.io/sql-cheat-sheet Page 4 of 4


