SQL Language Cheat Sheet

SELECT Basics

Retrieve data from tables by specifying which columns to return. Use
DISTINCT to remove duplicates and AS for aliases.

SELECT customer id, name, email
FROM customers;

-- With alias and DISTINCT

SELECT DISTINCT country AS customer_ country
FROM customers;

Key Points:
* Use specific columns instead of * for better performance
e DISTINCT removes duplicate rows
¢ AS keyword creates column aliases
e Column order in SELECT determines result order

Logical Operators

Combine multiple conditions using AND (all must be true), OR (at
least one true), and NOT (negates condition).

-—- AND operator
SELECT * FROM orders
WHERE status = 'shipped' AND total > 100;

-- OR operator
SELECT * FROM customers
WHERE country = 'USA' OR country = 'Canada';

Key Points:
* AND has higher precedence than OR
« Use parentheses to control evaluation order
e NOT is equivalent to != or <>
« Combine operators for complex logic

beekeeperstudio.io/sql-cheat-sheet

WHERE Clause

Filter rows based on conditions using comparison operators.
Combine multiple conditions with AND/OR.

SELECT name, price
FROM products
WHERE price > 100;

-- Multiple conditions

SELECT name, category

FROM products

WHERE category = 'Electronics'
AND price <= 500;

Key Points:
o Filters rows before returning results
« Can combine multiple conditions with AND/OR
e String values require single quotes

e Operators: =, I=, <>, <, >, <=, >=

ORDER BY

Sort query results in ascending (ASC) or descending (DESC) order.
Sort by multiple columns for complex ordering.

—-- Single columi
SELECT name, price
FROM products

ORDER BY price DESC;

ltiple columns
SELECT name, category, price

FROM products

ORDER BY category ASC, price DESC;

Key Points:
o ASC is default if not specified
¢ Sort by multiple columns (left to right priority)
¢ Can sort by column not in SELECT list
o NULL values sorted first or last (DB-dependent)

Page 1 of 4

SQL Language Cheat Sheet

LIMIT / OFFSET Pattern Matching (LIKE)
Limit the number of rows returned and skip rows using OFFSET. Match text patterns using wildcards: % matches any sequence of
Essential for pagination and working with large result sets. characters, _ matches a single character.

-- First 10 rows -- Starts with 'John'

SELECT name, price SELECT name, email

FROM products FROM customers
ORDER BY price DESC WHERE name LIKE 'John%';
LIMIT 10;

-- Contains '

-- Pagination (skip 20, get next 10) SELECT name FROM ¢
SELECT name, price WHERE name LIKE '

FROM products

ORDER BY price DESC -- Exact pattern 1 with 'A'")
LIMIT 10 OFFSET 20; SELECT code FROM produ
WHERE code LIKE 'A ';
Key Points:
« Essential for pagination Key Points:
» Combine with ORDER BY for consistent results * % matches zero or more characters
o OFFSET starts at 0 (first row) ¢ _ matches exactly one character
« Note: SQL Server uses TOP instead of LIMIT ¢ Case sensitivity depends on database collation
e Can use NOT LIKE for exclusion
Range & Set (BETWEEN, IN) NULL Handling
Filter by ranges using BETWEEN (inclusive) or match values in a list Work with NULL values using IS NULL and IS NOT NULL. Use
using IN. More efficient than multiple OR conditions. COALESCE to provide default values for NULL columns.
-— BET EN (1 ve) - NULL values
SELECT name, price SELECT name, phone
FROM products FROM customers
WHERE price BETWEEN 50 AND 100; WHERE phone IS NULL;
-- IN operator —-— Exclude NULL values
SELECT name, country SELECT name, email
FROM customers FROM customers
WHERE country IN ('USA', 'Canada', 'Mexico'); WHERE email IS NOT NULL;
Key Points: —-— Provide default value
SELECT name, COALESCE (phone, 'No phone') AS contact
e BETWEEN includes both boundary values FROM customers;
¢ IN is cleaner than multiple OR conditions
¢ Can use IN with subqueries Key Points:
e BETWEEN works with dates and strings o Cannot use = or I= with NULL

e Must use IS NULL or IS NOT NULL
e COALESCE returns first non-NULL argument
e NULL in math operations results in NULL

beekeeperstudio.io/sql-cheat-sheet Page 2 of 4

SQL Language Cheat Sheet

Aggregate Functions GROUP BY / HAVING
Perform calculations on sets of rows: COUNT, SUM, AVG, MIN, Group rows by column values and apply aggregate functions. Use
MAX. Aggregates ignore NULL values (except COUNT(*)). HAVING to filter groups (like WHERE for groups).

-- Group by single column

SELECT country, COUNT(*) AS customer_count
FROM customers

GROUP BY country

ORDER BY customer_ count DESC;

-- Basic aggregates
SELECT
COUNT (*) AS total orders,
SUM (amount) AS total_revenue,
AVG (amount) AS avg_order,
MIN (amount) AS smallest,
MAX (amount) AS largest

FROM orders;

-- Multiple columns with HAVING

SELECT category, status, AVG(price) AS avg price
FROM products

GROUP BY category, status

HAVING AVG (price) > 50;

-- COUNT variations
SELECT COUNT (*), COUNT (email),
COUNT (DISTINCT country)

FROM customers; Key Points:
Kev Points ¢ All non-aggregate SELECT columns must be in GROUP BY
ints:
y]] * WHERE filters rows before grouping
e COUNT(*) includes all rows (even with NULL) « HAVING filters groups after aggregation
* COUNT(column) excludes NULL values e Can use aggregate functions in HAVING clause

e COUNT(DISTINCT column) counts unique values
¢ SUM/AVG only work with numeric types

Joins (Quick Reference) [seE DETAILED GUIDE | Subqueries

Combine data from multiple tables based on related columns. INNER Queries within queries for complex filtering and calculations. Use with

JOIN returns matches only, LEFT/RIGHT preserve one side. IN, EXISTS, or as scalar values.

-- Subquery with IN

SELECT name, price

FROM products

WHERE category id IN (
SELECT id FROM categories
WHERE name = 'Electronics'

—— INNER JOIN (most common)
SELECT orders.id, customers.name, orders.amount
FROM orders
INNER JOIN customers
ON orders.customer_ id = customers.id;
-- LEFT JOIN (all orders + matching customers))i
SELECT orders.id, customers.name
FROM orders
LEFT JOIN customers
ON orders.customer id = customers.id;

-- Subquery with EXISTS
SELECT name FROM customers c
WHERE EXISTS (
SELECT 1 FROM orders o
WHERE o.customer id = c.id

Key Points: s
¢ INNER JOIN is most common (can write as just JOIN)
e LEFT/RIGHT JOINs preserve all rows from one table Key Points:
« Use ON clause to specify join condition o e T DS
e See beekeeperstudio.io/sql-join-cheat-sheet for more « EXISTS checks for existence (efficient)

e Scalar subquery returns single value
¢ Correlated subquery references outer query

beekeeperstudio.io/sql-cheat-sheet Page 3 of 4

SQL Language Cheat Sheet

Useful Resources

SQL Reference Guides

¢ SQL JOIN Cheat Sheet
beekeeperstudio.io/sql-join-cheat-sheet
Visual guide to all JOIN types with diagrams

¢ SQL Tutorials & Guides
beekeeperstudio.io/blog
In-depth tutorials on SQL fundamentals

Free Developer Tools

¢ SQL Formatter
beekeeperstudio.io/formatter
Format and beautify your SQL queries

e SQL Data Generator
beekeeperstudio.io/tools/sqgl-data-generator
Generate realistic test data for tables

o More Free Tools
beekeeperstudio.io/tools
JSON to SQL, syntax checker, and more

Database-Specific Guides

¢ PostgreSQL Documentation
beekeeperstudio.io/db/postgres

¢ MySQL Documentation
beekeeperstudio.io/db/mysq|

¢ 15+ Databases Supported
beekeeperstudio.io/databases

beekeeperstudio.io/sqgl-cheat-sheet

About Beekeeper Studio

Beekeeper Studio Query Editor

Beekeeper Studio is a modern, open-source SQL editor and
database manager designed to make working with databases
easier and more enjoyable.

Open Source & Free Community Edition
Available on GitHub with a GPL license. Free for personal and
commercial use.

Key Features:

¢ Autocomplete for tables, columns, and keywords

¢ Visual table editor with data editing

¢ Query history and saved queries

* Support for 15+ databases (PostgreSQL, MySQL, SQLite, SQL Server,
Oracle, and more)

e Cross-platform: Linux, macOS, and Windows

e Import/export data in multiple formats

Download & Learn More:

beekeeperstudio.io

GitHub: github.com/beekeeper-studio/beekeeper-studio

Page 4 of 4

