December 18, 2022 By Matthew Rathbone *

Amazon RDS and Redshift are both cloud-based data storage services offered by Amazon Web Services (AWS). While both services are designed for storing and managing large amounts of data, they are intended for different use cases and have some key differences.

Make Redshift Fun Again With Beekeeper Studio

Write SQL, create tables, edit data, and have fun doing it! Beekeeper Studio is available for MacOS, Linux, and Windows.

RDS Is A Transactional Database

Amazon RDS is a relational database service that makes it easy to set up, operate, and scale a relational database in the cloud. RDS supports popular database engines like MySQL, PostgreSQL, and Microsoft SQL Server, and offers features such as automatic patching and backups to help users manage their databases. RDS is well-suited for applications that require a traditional relational database, such as an e-commerce website or a web-based application that needs to store and retrieve structured data.

Redshift Is A Data Warehouse

Redshift, on the other hand, is a data warehousing service that is optimized for storing and querying large amounts of data. Redshift uses a columnar data storage format and uses massive parallel processing (MPP) to distribute data and query workloads across multiple nodes. This makes Redshift well-suited for complex, analytical workloads that require fast querying of large datasets, such as data warehousing, business intelligence, and big data analytics.

Confused about what this means? Read more about the difference between a database and a data warehouse

Differences In Pricing Models

One key difference between RDS and Redshift is their pricing model. RDS is typically charged on a per-hour or per-second basis, depending on the chosen database engine and the size and configuration of the database instances.

Redshift, on the other hand, is charged based on the amount of data stored and the number of compute nodes used for querying the data. This means that Redshift can be more cost-effective for applications that require storing and querying large amounts of data, but may not be as cost-effective for applications that only need a small amount of data storage.

Differences in Management and Maintenance

Another key difference between the two services is the level of management and maintenance required.

RDS is a fully managed service, meaning that Amazon takes care of tasks such as patching, backups, and scaling. This makes RDS easy to use and manage, but also means that users have limited control over the underlying database engine and configuration.

Redshift, on the other hand, is a partially managed service, which means that users are responsible for some maintenance and management tasks. This gives users more control over their data warehousing environment, but also requires a higher level of expertise and effort to manage.

Redshift vs RDS Summary

In summary, Amazon RDS and Redshift are both useful tools for storing and managing large amounts of data in the cloud. RDS is well-suited for applications that require a traditional relational database, while Redshift is better suited for complex analytical workloads that require fast querying of large datasets. The choice between the two services will depend on the specific needs and requirements of the application, as well as the level of expertise and effort that users are willing to invest in managing their data storage environment.